

Synergistic Effect of Aluminium Oxide / Poly (acrylamide-coacrylic acid) Hybrid Composite

Nandkishor B. Shirsath¹, Vikas V. Gite¹ and Jyotsna S. Meshram^{1,2*}

¹School of Chemical Sciences, North Maharashtra University, Jalgaon, Maharashtra, India ²Department of Chemistry, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, India

ABSTRACT

The progress in the synthesis and technology of hydrogels makes these materials attractive structures with possible applications. In the present work, In-situ polymerization technique synthesized alumina hydrogel composite with water as a green solvent. The inclusion/incorporation of metal oxide particles in three-dimensional polymeric structures is an innovative means for obtaining multicomponent systems with diverse functionality within a hybrid hydrogel network. Polymer compositions with aluminium oxide, can improve their thermal properties and self-sustaining ability under working environmental conditions. The composite of poly(acrylamide-co-acrylic acid) [P(AM-co-AA)] with aluminium oxide as a composite was created as a result of their intermolecular interactions. The creation of a composite was confirmed by FT-IR spectroscopy, DSC, TGA, and FE-SEM analysis. The aluminium oxide particles were homogeneously distributed in the P(AM-co-AA). The incorporation of aluminium oxide particles gives rise to the enhancement of thermal stability due to the strong interactions between aluminium oxide and poly(acrylamide-co-acrylic acid) polymer. Hence, the synthesized materials were biodegradable, environment friendly and biocompatible which touches the green chemistry route.

Keywords :- Aluminium oxide, Hydrogel, Composite, Interactions, Green Chemistry